Photo-excitation intensity dependent electron and hole injections from lead iodide perovskite to nanocrystalline TiO2 and spiro-OMeTAD.
نویسندگان
چکیده
Photo-excitation intensity dependent electron and hole injections from CH3NH3PbI3 perovskite to nanocrystalline TiO2 and spiro-OMeTAD are presented with the electron injection yield decrease from 95% to 10% and the hole injection yield decrease from 99% to 50% by increasing the excitation intensity from 10 nJ cm(-2) to 50 μJ cm(-2).
منابع مشابه
Photoinduced processes in lead iodide perovskite solid-state solar cells
Organic-inorganic hybrid systems based on lead halide compounds have recently encountered considerable success as light absorbers in solid-state solar cells. Herein we show how fundamental mechanistic processes in mesoporous oxide films impregnated with CH3NH3PbI3 can be investigated by time resolved techniques. In particular, charge separation reactions such as electron injection into the tita...
متن کاملUnravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells
Lead halide perovskites have recently been used as light absorbers in hybrid organic–inorganic solid-state solar cells, with efficiencies as high as 15% and open-circuit voltages of 1 V. However, a detailed explanation of the mechanisms of operation within this photovoltaic system is still lacking. Here, we investigate the photoinduced charge transfer processes at the surface of the perovskite ...
متن کاملInterfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.
Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectr...
متن کاملSpectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells.
We propose a spectrum-dependent mechanism for the oxidation of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI), which is commonly used in perovskite solar cells as the hole transport layer. The perovskite layer plays different roles in the Spiro-OMeTAD oxidization for various spectral ranges. The eff...
متن کاملHierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multiwalled Carbon Nanotubes for Perovskite Solar Cells.
The low electrical conductivity of spiro-OMeTAD hole transport layers impedes further enhancements of the power conversion efficiency (PCE) of perovskite solar cells. We embedded multiwalled carbon nanotubes (MWNTs) in spiro-OMeTAD (spiro-OMeTAD/MWNTs) to increase carrier mobility and conductivity. However, direct electrical contact between CH3 NH3 PbI3 and the MWNTs created pathways for undesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 52 4 شماره
صفحات -
تاریخ انتشار 2016